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Abstract

The credal set operator is studied as a set-valued mapping that assigns the set
of dominating probabilities to a coherent lower prevision on some set of gambles. It
is shown that this mapping is affine on certain classes of coherent lower previsions,
which enables to find a decomposition of credal sets. Continuity of the credal set
operator is investigated on finite universes with the aim of approximating credal
sets.

1 Introduction

The main purpose of this paper is to investigate the geometrical-topological relations
between the two important classes of imprecise probability models of Walley [12]: coherent
lower previsions and credal sets of linear previsions. The credal set operator is studied as
a set-valued mapping that sends every coherent lower prevision to the nonempty, weak∗-
compact and convex set of dominating linear previsions. Since the set of all coherent lower
previsions is a convex subset of a linear topological space, the basic question is whether the
credal set operator acts as a morphism between the corresponding mathematical objects.
Precisely, the question is if the credal set operator is

(i) an affine mapping, that is, convex combinations of coherent lower previsions are
mapped to the corresponding “convex combinations” of the credal sets,

(ii) homeomorphism, provided a topology is introduced on the set of all credal sets.
In Section 2 we introduce basic notions and notations. The main tool used in this paper

are the elements of subdifferential (superdifferential) calculus developed for continuous
convex (concave) functions [10]. Theorem 2 in Section 3 shows that every credal set can
be represented as the superdifferential. This idea goes back to the solution of coalition
games by core and appears already in Aubin’s work [1]. Further, it is proven that the credal
set operator is an affine mapping on the class of all coherent lower probabilities defined
on the set of all subsets of some universe (Theorem 3) and on the class of all coherent
lower previsions defined on the set of all the gambles (Corollary 1). It is demonstrated in
section 3.1 how the former result can be used to obtain a decomposition of credal sets of
belief measures.

Section 4 is devoted to the topological properties. The exposition is confined to the
case of finite universes. If the Hausdorff metric is introduced on the set of all nonempty
compact convex subset of the set of all linear previsions, then the credal set operator is
a homeomorphism (Theorem 7). The consequence of this result mentioned in section 4.1
makes possible to approximate an arbitrary credal set by a “simple” credal set in the
Hausdorff metric. The study of continuity of credal set operator need not be limited to
finite universes. The principal difficulty in the general non-metrizable case is how to define
a topology on the set of all nonempty, weak∗-compact convex subsets of the dual of the
Banach space of all gambles considered in its weak∗ topology. Only a brief discussion of
this issue would, however, lead to introducing quite complicated mathematical apparatus
such as uniformities defined on spaces of credal sets (cf. [2, Chapter II]). Since such
considerations go far beyond the intended scope of the paper, the general case is left for
separate future investigations.
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2 Basic Notions

In this section we introduce the notation and repeat the notions and basic results from
Walley’s theory of imprecise probabilities [12]. Let Ω be a nonempty set. A gamble is a
bounded function Ω → R. If a ∈ R, then we use the same symbol a to denote a constant
gamble on Ω. By L we denote the Banach space of all gambles with the supremum norm
∥.∥∞, that is,

∥f∥∞ = sup {|f(ω)| | ω ∈ Ω}, f ∈ L .

Let K ⊆ L . A lower prevision P is a real function defined on K . If the set K
contains only characteristic functions of subsets of Ω, then P is called a lower probability.
The conjugate upper prevision P is defined on −K = {f | −f ∈ K } by letting P (f) =
−P (−f) for every f ∈ −K . A coherent lower prevision on L is a lower prevision P
defined on L that satisfies the following conditions for every f, g ∈ L :

(i) P (f) ≥ inf {f(ω) | ω ∈ Ω},
(ii) P (λf) = λP (f), for every λ ≥ 0,
(iii) P (f + g) ≥ P (f) + P (g).
In particular, every coherent lower prevision on L is a continuous concave function on
the Banach space L . If P is a lower prevision defined on K , then P is called coherent
provided there exists a coherent lower prevision defined on L and coinciding with P on
K .

A linear prevision P on L is a self-conjugate coherent lower prevision on L , that is,
P (−f) = −P (f) for every f ∈ L . Every linear prevision P is a positive linear functional
on L with P (1) = 1. A real functional defined on K is called a linear prevision on K if
it can be extended to a linear prevision on L . By L ∗ we denote the dual Banach space
of L : the elements of L ∗ are precisely the continuous linear functionals L → R. Every
linear prevision belongs to L ∗.

On the one hand, the sets of linear previsions appearing in the theory of imprecise
probabilities are usually not compact in the norm topology of L ∗. On the other hand, if
the Banach space L ∗ is considered with the weak∗ topology, then the set P of all linear
previsions on L becomes a weak∗-compact subset of L ∗ [12, p.610]. Let P be a coherent
lower prevision on K . The credal set of P is the set

M(P ) = {P ∈ P | P (f) ≥ P (f), f ∈ K }.

The terminology is not unified so M(P ) is called a core or a structure by some authors.
The credal set M(P ) is a nonempty, convex and weak∗-compact subset of L ∗.

Given a coherent lower prevision P on K , put

EP (f) = inf {P (f) | P ∈ M(P )}, for every f ∈ L ,

and call the function EP the natural extension of P . Every natural extension EP is the
(pointwise) smallest coherent lower prevision that extends P to the set L .

3 Superdifferential of Coherent Lower Prevision

The notion of superdifferential of a continuous concave function is one of the generaliza-
tions of the classical concept of Gâteaux derivative of a differentiable function. In the
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next paragraph only basic definitions and results are needed. The reader is referred to
[10] for details. Although the theory is developed for subdifferentials of convex functions
in [10], the analogous definitions and theorems for superdifferentials of concave functions
are derived straightforwardly.

Let X be a Banach space and E be a nonempty open convex subset of X. By X∗

we denote the dual space of X. In this paragraph we always assume that φ is a concave
function E → R: for every x1, x2 ∈ E and every α ∈ [0, 1], we have

φ(αx1 + (1 − α)x2) ≥ αφ(x1) + (1 − α)φ(x2).

For every x0 ∈ E and x ∈ X, put

d+φ(x0)(x) = lim
t→0+

φ(x0 + tx) − φ(x0)

t

and call d+φ(x0)(x) the right-hand directional derivative of φ at x0. If follows from [10,
Lemma 1.2] that the limit defining d+φ(x0)(x) exists for every x0 ∈ E and every x ∈ X,
and that d+φ(x0) is a positively homogeneous concave function on X. The function φ
is said to be Gâteaux differentiable at x0 if the functional d+φ(x0) : X → R is actually
linear (not necessarily continuous). Equivalently, the function φ is Gâteaux differentiable
at x0 ∈ E iff the limit

dφ(x0)(x) = lim
t→0

φ(x0 + tx) − φ(x0)

t

exists for each x ∈ X, and in this case dφ(x0) = d+φ(x0). The functional dφ(x0) is the
Gâteaux derivative of φ at x0.

Definition 1. Let x ∈ E. The superdifferential of φ at x is the set

∂φ(x) = {φ∗ ∈ X∗ | φ∗(y) ≥ d+φ(x)(y), y ∈ X}.

The superdifferential of φ at x can be equivalently expressed as

∂φ(x) = {φ∗ ∈ X∗ | φ∗(y − x) ≥ φ(y) − φ(x), y ∈ E}. (3.1)

The elements of ∂φ(x) are called supergradients of φ at x. Each supergradient φ∗ is
viewed as a plausible candidate for a derivative of φ at x. The following existence result
is well-known ([10, Proposition 1.11]).

Theorem 1. Let X be a Banach space and E be a nonempty open convex subset of X.
If the concave function φ is continuous at x ∈ E, then ∂φ(x) is a nonempty, convex and
weak∗-compact subset of X∗.

The next theorem enables to identify the credal set of P with the set of all supergra-
dients at 1 of the natural extension of P .

Theorem 2. Let K ⊆ L . If P is a coherent lower prevision on K and EP is the
corresponding natural extension, then

M(P ) = ∂EP (1).

Moreover, if EP is Gâteaux differentiable at 1, then P is a linear prevision on K .
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Proof. Let P ∈ M(P ). Then P ≥ EP and P (1) = 1 = EP (1), which implies for every
gamble f ∈ L that

P (f − 1) ≥ EP (f) − EP (1).

Since every linear prevision is a norm continuous linear functional, the inequality above
means that P is a supergradient of EP at 1 by (3.1).

Suppose, on the other hand, that P ∗ ∈ ∂EP (1). The equation (3.1) gives that for every
gamble f ∈ L we have

P ∗(f − 1) ≥ EP (f) − 1. (3.2)

Hence for every real α > 0,

P ∗(αf − 1) ≥ EP (αf) − 1,

and after dividing by α,

P ∗(f) − P ∗(1)

α
≥ EP (f) − 1

α
.

Letting α → 0 leads to P ∗(f) ≥ EP (f). If f = 0, then P ∗(−1) ≥ −1 from (3.2) so that
P ∗(1) = 1. The functional P ∗ is a linear prevision as P ∗ is self-conjugate and satisfies

P ∗(f) ≥ EP (f) ≥ inf{f(ω) | ω ∈ Ω}

for every f ∈ L . Since EP (f) = P (f) whenever f ∈ K , we get P ∗ ∈ M(P ).
To prove the second assertion, assume that EP is Gâteaux differentiable at 1. It follows

from [10, Proposition 1.8] that this is equivalent to

∂EP (1) = {dEP (1)}.

Since M(EP ) = ∂EP (1), this means that the continuous concave function EP is domi-
nated by the unique continuous linear functional dEP (1). The Hahn-Banach theorem then
implies that EP itself must be linear and hence, a fortiori, P must be a linear prevision.

The second assertion of the previous theorem can not be reversed: if P is a linear
prevision on K , then the natural extension EP is not in general Gâteaux differentiable
at 1.

On the set 2L ∗
of all subsets of L ∗ we consider the multiplication of a set A ⊆ L ∗

by a real number α and the (Minkowski) sum of sets A1 ⊆ L ∗ and A2 ⊆ L ∗:

αA = {αP ∗ | P ∗ ∈ A},
A1 ⊕ A2 = {P ∗

1 + P ∗
2 | P ∗

1 ∈ A1, P
∗
2 ∈ A2}.

Let K1, K2 be convex subsets of linear spaces X1, X2, respectively. A mapping a : K1 →
K2 is affine, whenever for every convex combination

∑n
i=1 αixi of elements x1, . . . , xn ∈

K1, we have

a

(
n∑

i=1

αixi

)
=

n∑
i=1

αia(xi).

Let 2Ω be the set of all subsets of Ω. A lower probability P on 2Ω is supermodular if

P (A ∪ B) + P (A ∩ B) ≥ P (A) + P (B)

for every A,B ∈ 2Ω.
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Theorem 3. If P 1, . . . , P n are supermodular coherent lower probabilities on 2Ω and αi ∈
[0, 1], i = 1, . . . , n, are such that

∑n
i=1 αi = 1, then

M

(
n∑

i=1

αiP
i

)
=

n⊕
i=1

αiM(P i). (3.3)

Proof. The lower probability
∑n

i=1 αiP
i is coherent [12, Theorem 2.6.4]. The coherent

lower probability
∑n

i=1 αiP
i is supermodular since each P i is supermodular, so the set of

all supermodular coherent lower probabilities on 2Ω is a convex subset of R2Ω
. It follows

from [8, Theorem 5.2] that the natural extension EP of any supermodulat coherent lower
probability P on 2Ω coincides with the asymmetric Choquet integral Ia

P : L → R, where

Ia
P (f) =

∫ 0

−∞
P (f−1((t,∞))) − P (Ω) dt

+

∫ ∞

0

P (f−1((t,∞))) dt,

for every f ∈ L . A routine verification shows that the mapping sending each supermod-
ular coherent lower probability P to Ia

P is affine, hence

EPn
i=1 αiP

i = Ia
Pn

i=1 αiP
i =

n∑
i=1

αiI
a
P i =

n∑
i=1

αiEP i

Theorem 2 together with the preceding equality give

M

(
n∑

i=1

αiP
i

)
= ∂

(
EPn

i=1 αiP
i

)
(1) =

= ∂

(
n∑

i=1

αiEP i

)
(1).

It follows directly from the definition of superdifferential that for every i = 1, . . . , n,

∂(αiEP i)(1) = αi∂(EP i)(1). (3.4)

By the Moreau-Rockafellar theorem [10, Theorem 3.23], the equality (3.4) and Theorem
2, we obtain

∂

(
n∑

i=1

αiEP i

)
(1) =

n⊕
i=1

∂(αiEP i)(1) =

=
n⊕

i=1

αi∂(EP i)(1) =
n⊕

i=1

αiM(P i).

One of key ingredients in the above proof is the affinity of the natural extension oper-
ator P 7→ EP derived from the representation of the natural extension by the assymetric
Choquet integral [8, Theorem 5.2]. This suggests the following general result.
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Theorem 4. Let K be a set of gambles and CK be the convex set of all coherent lower
probabilities on K . If the mapping

P ∈ CK 7→ EP

is affine, then the equality (3.3) holds true for every P 1, . . . , P n ∈ CK .

Proof. Let P 1, . . . , P n ∈ CK and αi ∈ [0, 1], i = 1, . . . , n, be such that
∑n

i=1 αi = 1. Then

EPn
i=1 αiP

i =
n∑

i=1

αiEP i ,

so

M

(
n∑

i=1

αiP
i

)
= ∂

(
n∑

i=1

αiEP i

)
(1),

and the equality (3) again follows from the Moreau-Rockafellar theorem [10, Theorem
3.23] together with (3.4) and Theorem 2.

Let S be the set of all nonempty weak∗-compact convex subsets of P. In the sequel we
will study the properties of the set-valued mapping

M(.) : P 7→ M(P )

that sends a coherent lower probability on some set of gambles K to a credal set from S.
A superficial look at the equality (3.3) would then suggest that this mapping is affine on
the class of coherent lower probabilities mentioned in Theorem 3. A necessary condition
is that the codomain S of M is a convex set. But this notion of convexity is not even
defined in the present framework since the set 2L ∗

endowed with the Minkowski sum of
sets and the scalar multiplication of a set is not a linear space. The main difficulty is that
the algebra (2L ∗

,⊕) is not a group but only a commutative monoid. The properties of the
Minkowski sum and the scalar multiplication of sets defined above can be summarized as
follows.

Proposition 1. The set 2L ∗
together with the Minkowski sum ⊕ is a real semilinear space,

that is:
(i) the algebra (2L ∗

,⊕) is a commutative monoid with the neutral element {0},
(ii) α(βA) = (αβ)A, for every α, β ∈ R

and every A ∈ 2L ∗
,

(iii) 1A = A,
(iv) 0A = {0},
(v) α(A1 ⊕ A2) = (αA1) ⊕ (αA2),

for every A1,A2 ∈ 2L ∗
.

Semilinear spaces, which generalize linear spaces, are algebraic structures close to
semirings [5]. The definitions of convexity and affine maps can be directly carried over to
a more general framework of semilinear spaces. In that follows these generalized definitions
are tacitly assumed. Thus we will say that S is convex (as a subset of 2L ∗

) if

αA1 ⊕ (1 − α)A2 ∈ S

holds true for every A1, A2 ∈ S and every α ∈ [0, 1].
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Proposition 2. The set S is a convex subset of the real semilinear space 2L ∗
.

Proof. Consider any A1,A2 ∈ S and a real number α ∈ [0, 1]. Put A = αA1 ⊕ (1− α)A2.
Then A is a nonempty convex subset of P since both A1, A2 are nonempty and convex.
As both αA1 and (1 − α)A2 are weak∗-closed, their Minkowski sum A is a weak∗-closed
subset of P, and thus weak∗-compact.

With these facts in mind, it is safe to interpret the conclusions of Theorem 3 and 4 as
expressing the fact that “the mapping M is affine”. We will show that the mapping M is
an affine isomorphism1 from the convex set C of all coherent lower previsions on L to S.
The essential result is the following theorem [12, Theorem 3.6.1].

Theorem 5 (Walley). The mapping M is a bijection from C to S. The inverse mapping
M−1 sends A ∈ S to the coherent lower prevision

M−1(A)(f) = inf{P (f) | P ∈ A}, f ∈ L .

Corollary 1. The mapping M is an affine isomorphism of C and S.

Proof. The mapping M is one-to-one by Theorem 5. It suffices to show that P ∈ C 7→ EP

is affine since this gives the affinity of M by Theorem 4. However, this is trivial as P = EP

for every P ∈ C.

Hence the mutual correspondence between the two different models of imprecise prob-
abilities (coherent lower previsions and credal sets) introduced by Walley is retained also
on the geometric level.

3.1 Decomposition of credal sets

Theorem 3 can be useful in situations in which a coherent lower probability P on 2Ω is
a convex combination of the coherent lower probabilities whose credal sets have a special
shape (such as simplices). In this case, the credal set of P is decomposed into the convex
combination of the respective “basic” credal sets. In particular, Theorem 3 is an infinite-
dimensional generalization of Corollary 4 from [3], where a similar result is achieved for
finite Ω and totally monotone set functions investigated in the framework of cooperative
games. We will explicitly show how Theorem 3 can be applied to the credal sets of belief
measures [11] by reformulating [3, Corollary 4] as a consequence of Theorem 3 in this
paper.

Theorem 6. Let Ω be finite, P be a belief measure on 2Ω and µP its Möbius transform.
Then

M(P ) =
⊕
A⊆Ω

µP (A)SA,

where SA is the simplex of probabilities on 2Ω supported by A, that is, SA = {P ∈ P |
P (A) = 1}.

1An affine isomorphism is a bijective affine mapping between two convex subsets of real semilinear
spaces. Its inverse is then necessarily an affine mapping too.
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Proof. The set SA is a simplex since it is a face of the simplex of all probabilities on 2Ω.
A belief measure P is a supermodular coherent lower probability on 2Ω, so Theorem 3
can be employed. Since

∑
A⊆Ω µP (A) = 1, where µP (A) ≥ 0 for each A ⊆ Ω, and

P =
∑
A⊆Ω

µP (A)PA,

where the set functions

PA(B) =

{
1, A ⊆ B,

0, otherwise,

are belief functions, it suffices to realize that M(PA) = SA.

4 Continuity of Credal Set Mapping

The main purpose of this section is to study the topological properties of the credal set
operator. We will confine the investigations to the case of finite Ω. The first necessary
step is an introduction of topologies on both C and S.

If Ω = {1, . . . , n}, then the set of all gambles L can be identified with the Euclidean
space Rn. A gamble is then viewed as an n-dimensional vector f = (f1, . . . , fn) ∈ Rn.
The dual space L ∗ is identified with Rn. If ⟨., .⟩ denotes the usual scalar product on
Rn, then every linear prevision P on L canonically corresponds to the vector of reals
p = (p1, . . . , pn) such that ⟨p, 1⟩ = 1 and pi ≥ 0 for each i = 1, . . . , n. We have

P (f) = ⟨p, f⟩, f ∈ L . (4.5)

The pointwise limit of coherent lower previsions on any set of gambles K is a coherent
lower prevision on K . Consequently, the set C is a closed convex subset of the locally
convex space RL . Let ∥.∥ be the Euclidean norm on Rn. The topology of pointwise
convergence on C is described by the metric

∆(P 1, P 2) = max {|P 1(f) − P 2(f)| | ∥f∥ ≤ 1}.

Precisely, the sequence (P n) in C pointwise converges to P ∈ C iff ∆(P n, P ) → 0 (see [7,
Theorem 1.3.5,p.133]).

The set S contains all the nonempty compact convex subsets of

P = {p ∈ Rn | ⟨p, 1⟩ = 1, pi ≥ 0, i = 1 . . . , n}.

The topology on S can be introduced by the Hausdorff metric [2, Chapter II]. For every
A ∈ S and every p ∈ P, define

dA(p) = min {∥p − p′∥ | p′ ∈ A}. (4.6)

If A1,A2 ∈ S, then denote

eH(A1, A2) = sup {dA2(p1) | p1 ∈ A1}.
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The Hausdorff metric ∆H on S is defined as

∆H(A1,A2) = max {eH(A1,A2), eH(A2,A1)},

for every A1,A2 ∈ S.
The topology corresponding to the metric ∆H is called the Hausdorff metric topology.

The Hausdorff metric topology depends only on the topology of P: if any metric equivalent
to the Euclidean metric is used in place of ∥.∥ in (4.6), the resulting metric topology on
S would coincide with the Hausdorff metric topology. Indeed, it follows from [2, Theorem
II-6] that the Hausdorff metric topology on the family K of nonempty compact subsets of
P is generated by the sets

{K ∈ K | K ⊆ U, U open in P}

and
{K ∈ K | K ∩ V ̸= ∅, V open in P}.

The Hausdorff metric topology of S arises as a subspace topology from K. Hence it is
immaterial if the Euclidean norm or the supremum norm originally defined on the space
of gambles is used.

Theorem 7. Let Ω = {1, . . . , n}. If S is endowed with the Hausdorff metric topology,
then the mapping M : C → S is an affine isomorphism and homeomorphism.

Proof. The mapping M is an affine isomorphism by Corollary 1 so that it remains to
prove the continuity in both directions. To this end, we use the following convergence
result, which can be easily deduced from [7, Corollary 3.3.8, p.156]: if (An) is a sequence
in S and A ∈ S, then An → A in the Hausdorff metric iff the sequence of functions

((f ∈ Rn 7→ inf {⟨p, f⟩ | p ∈ An})n)

pointwise converges to the function

f ∈ Rn 7→ inf {⟨p, f⟩ | p ∈ A}.

To show that the mapping M is continuous, consider a sequence (P n) converging to P in
C. Theorem 5 and (4.5) together yield

P n(f) = M−1(M(P n))(f) = inf {⟨p, f⟩ | p ∈ M(P n)}

and
P (f) = M−1(M(P ))(f) = inf {⟨p, f⟩ | p ∈ M(P )}.

This implies M(P n) → M(P ) in the Hausdorff metric. Continuity of the inverse mapping
M−1 is shown similarly.
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4.1 Approximation of credal sets

By Theorem 5 of Walley every nonempty compact convex subset A ∈ S is a credal set
of the coherent lower prevision M−1(A). Although every credal set is characterized by
the Krein-Milman theorem as the closed convex hull of its vertices, it can be convenient
to find a class of subsets of S whose members have a particular geometric structure and
which is sufficient for an approximation of every credal set. The polytopes from S are
natural candidates for such a task. A polytope is the convex hull of finitely-many points
in Rn. For our purposes it will be even enough to focus on so-called simple polytopes.
A polytope is called simple if each of its vertices is contained in the same number of
facets. For example, a cube or a simplex are simple polytopes, an Egyptian pyramid is
not a simple polytope. It was proven in [9] that the credal set of every possibility measure
is a simple polytope. The class of simple polytopes is considered to be computationally
tractable: see [13] or the discussion in [9, p.243-244] and the references therein.

Theorem 8. Let Ω = {1, . . . , n} and S be endowed with the Hausdorff metric topology.
If P is any coherent lower prevision on a set of gambles K ⊆ Rn, then there exists a
sequence (Sn) of simple polytopes in S such that

(i) Sn → M(P ) in the Hausdorff metric,
(ii) M−1(Sn) → P pointwise on K ,
(iii) M−1(Sn) → P uniformly on each compact subset of K .

Proof. (i) is basically Theorem 2.8 in [4], which says that simple polytopes form a dense
set in S. The assertion (ii) follows from (i) in conjunction with Theorem 7: the sequence of
coherent lower previsions M−1(Sn) pointwise converges to P on K as M−1 is continuous.
The last assertion (iii) is a wellknown property of the convergence of concave functions
Rn → R (see [7, Theorem B.3.1.4], for instance).

The proof of [4, Theorem 2.8] is based on a strong compactness argument: given any
open cover of a polytope K by balls with a given diameter and with centers in the extreme
boundary of K, there exists a finite refinement of this cover. The idea is analogous to
inscribing a polygon into a circle. Hence the theorem does not give an algorithm for
finding the convergent sequence of simple polytope. Nevertheless, at least in case that
M(P ) is a polytope, it is possible to explicitly find a simple polytope “sufficiently close
to M(P )” [13].

5 Conclusions

In this contribution we identified two main cases in which the credal set mapping is affine
(Theorem 3 and Corollary 1). Yet none of them covers the whole variety of coherent
lower previsions since “completeness” of their domains is required: the set of gambles is
required to be the set of all events or the set of all the gambles. Theorem 4 then gives
a sufficient condition enabling to get rid of those assumptions: it is the affinity of the
natural extension operator. In general, the natural extension operator is not stable under
the usual operations with imprecise probabilities: it need not preserve neither convex
combinations nor limits of convergent sequences of coherent lower previsions [6, Section
5]. In future investigations our aim will be to single out the sets of gambles satisfying the
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assumption of Theorem 4 and to extend the material presented in Section 4 to infinite
universes.
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